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Abstract

Current formal mathematics, being divorced from the empirical, is entirely a social

construct, so that mathematical theorems are no more secure than the cultural belief

in 2-valued logic, incorrectly regarded as universal. Computer technology, by

enhancing the ability to calculate, has put pressure on this social construct, since

proof-oriented formal mathematics is awkward for computation, while computational

mathematics is regarded as epistemologically insecure. Historically, a similar epis-

temological fissure between computational/practical Indian mathematics and for-

mal/spiritual Western mathematics persisted for centuries, during a dialogue of

civilizations, when texts on ’algorismus’ and ’infinitesimal’ calculus were imported

into Europe, enhancing the ability to calculate. I argue that this epistemological tension

should be resolved by accepting mathematics as empirically-based and fallible, and

by revising accordingly the mathematics syllabus outlined by Plato.
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0 Introduction

0.0 The East-West civilizational clash in mathematics: pramâna vs proof

In Huntington’s terminology of a clash of civilizations, one might analyse the basis of
the East-West civilizational clash as follows: the Platonic tradition is central to the West,
even if we do not go to the extreme of Whitehead’s remark, characterising all Western
philosophy as no more than a series of footnotes to Plato. But the same Platonic tradition
is completely irrelevant to the East. 

In the present context of mathematics, the key issue concerns Plato’s dislike of the
empirical, so the civilizational clash is captured by the following central question: can
a mathematical proof have an empirical component? 

0.1 The Platonic and Neoplatonic rejection of the empirical

According to university mathematics, as currently taught, the answer to the above
question is no. Current-day university mathematics has been enormously influenced by
(Hilbert’s analysis of) “Euclid’s” Elements, and Proclus,2 a Neoplatonist and the first
actual source of the Elements, argued that

Mathematics…occupies the middle ground between the partless realities…and divisible things.
The unchangeable, stable and incontrovertible character of [mathematical] propositions shows that
it [mathematics] is superior to the kinds of things that move about in matter.…Plato assigned dif-
ferent types of knowing to…the…grades of reality. To indivisible realities he assigned intellect,
which discerns what is intelligible with simplicity and immediacy, and…is superior to all other
forms of knowledge.  To divisible things, in the lowest level of nature, that is, to all objects of
sense-perception, he assigned opinion, which lays hold of truth obscurely, whereas to inter-
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mediates, such as the forms studied by mathematics, which fall short of indivisible but are superior
to divisible nature, he assigned understanding. 

In Plato’s simile of the cave, the Neoplatonists placed the mathematical world midway
between the empirical world of shadows, and the real world of the objects that cast the
shadows. Mathematical forms, then, were like the images of these objects in water—su-
perior to the empirical world of shadows, but inferior to the ideal world of the intellect,
which could perceive the objects themselves. 

Proclus explains that the term ‘mathematics’ means, by derivation, the science of
learning, and that learning (µα′θησις ) is but recollection of the knowledge that the soul
has from its previous births which it has forgotten—as Socrates had demonstrated with
the slave-boy. Hence, for Proclus, the object of mathematics is ‘to bring to light concepts
that belong essentially to us’ by taking away ‘the forgetfulness and ignorance that we
have from birth’, and re-awakening the knowledge inherent in the soul.  Hence, Proclus
valued mathematics (especially geometry) as a spiritual exercise, like hatha yoga, which
turns one’s attention inwards, and away from sense perceptions and  empirical concerns,
and ‘moves our souls towards Nous’ (the source of the light which illuminates the
objects, of which one normally sees only shadows, and which one could better under-
stand through their reflections in water).

In regarding mathematics as a spiritual exercise, which helped the student to turn away
from uncertain empirical concerns to eternal truths, Proclus was only following Plato
The young men of Plato’s Republic (526 et seq) were required to study geometry because
Plato thought that the study of geometry uplifts the soul. Plato thought that geometry
being knowledge of what eternally exists, the study of geometry compels the soul to
contemplate real existence, it tends to draw the soul towards truth. Plato emphatically
added, ‘if it [geometry] only forces the changeful and perishing upon our notice, it does
not concern us,’3 leaving no ambiguity about the purpose of mathematics education in
the Republic. 

0.2 Rejection of the empirical in contemporary mathematics

A more contemporary reason to reject any role for the empirical in mathematics is that
the empirical world has been regarded as contingent in Western thought. Any proposition
concerning the empirical has therefore been regarded as a proposition that can at best
be contingently true. Hence, such propositions have been excluded from mathematics
which, it has been believed, deals only with propositions that are necessarily true: either
eternally true, or at least true for all future time, or true in all possible worlds.4 

In the 20th century CE, it has, of course, again been (partly) accepted that mathemati-
cal theorems are not absolute truths,5 but are true relative to the axioms of the underlying
mathematical theory. Nevertheless, the relation between the axioms and theorems is still
regarded as one of necessity: the theorems are believed to be necessary consequences
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of the axioms—it is believed that every possible (logical) world in which the axioms
are true is a world in which the theorems are also true.  A mathematical theorem such
as 2+2=4 is no longer regarded as eternally true, but, since this theorem can be proved,
since it can be logically deduced from Peano’s axioms, it is believed that 2+2=4 is a
necessary and certain consequence of Peano’s axioms. It is today believed that though
neither any axiom nor the theorem can be called  a ‘necessary truth’, the relation between
axioms and the theorem can be so called. A theorem being the last sentence of a proof,
theorems relate to axioms through the notion of mathematical proof, which is believed
to embody and formalise the notion of logical necessity. Contemporary Western math-
ematics has not abandoned the notion of ‘necessary truth’, it has merely shifted the locus
of this ‘necessary truth’ from theorems and axioms to proof.  From this perspective,
admitting the empirical into mathematical proof would weaken and make contingent the
relation of theorems to axioms, so that the empirical is still not allowed any place in the
formal mathematical demonstration called ‘proof’.

The current definition of a formal mathematical proof as enunciated by Hilbert, may
be found in any elementary text on mathematical logic.6 This definition may be stated
informally as follows. A mathematical proof consists of a finite sequence of statements,
each of which is either an axiom or is derived from two preceding axioms by the use of
modus ponens or some similar rules of reasoning. Modus ponens, refers to the usual
rule: A, A⇒ B,  hence B. The other ‘similar rules of reasoning’ must be prespecified, and
may include simple rules such as instantiation (for all x, f(x), hence f(a)), and univer-
salisation (f(x), hence for all x, f(x)) etc. A mathematical proof being such a sequence of
statements, a reference to the empirical cannot be introduced in the course of a proof.

Neither can there be any reference to the empirical in the axioms at the beginning of
a proof. Here, the word ‘axiom’ is used in the sense of ‘postulate’; axioms are not
regarded as self-evident truths, axioms are merely an in-principle arbitrary set of
propositions whose necessary consequences are explored in the mathematical theory.
Since there is no reference here to the empirical, mathematical postulates and the
primitive undefined symbols they involve are regarded as being, in principle, completely
devoid of meaning.

Postulates relating to the empirical world lead to a physical theory, and not to
mathematics. This difference between mathematical and physical theories is embodied
also in Popper’s criterion of refutability as follows. The theorems of the sentence
calculus are exactly the tautologies.  Though these tautologies may not be obvious, being
tautologies, they are not refutable. Unlike a mathematical theory, a physical theory must
be (logically) refutable, and hence must contain some hypotheses and conclusions that
are not tautologies. Mathematics concerns the tautologous relation between hypothesis
and conclusions, while physics involves the empirical validity of the hypothesis/con-
clusions. Thus, no mathematical theory is a physical theory according to this widely-
used current philosophical classification, since no mathematical theory involves the
empirical. 
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0.3 Acceptance of the empirical in Indian thought

However deep rooted may be this rejection of the empirical, in Western ways of thinking
about mathematics, it seems to have gone unnoticed that not all cultures subscribe to
this elevation of metaphysics above physics. Not all cultures and philosophies subscribe
to this belief that the empirical world is contingent, and that only the non-empirical can
be necessary. For example, the Lokâyata (popular/materialist) stream of though in India
adopts exactly the opposite viewpoint. It explicitly rejects any world except that of sense
perception. It admits the pratyaksa or the empirically manifest as the only sure means
of pramâna, or validation, while rejecting anumâna or inference as error-prone, and
fallible. That is, in terms of the Platonic gradation of reality, Lokâyata places intellectual
ways of knowing on a lower footing than knowledge relating directly to sense percep-
tion.  Howsoever odd this may seem from a Western perspective, and notwithstanding
the orientalist characterization of Indian thought as ‘spiritual’, all major Indian schools
of thought concur in accepting the pratyaksa as a valid pramâna, or means of validation.
Moreover, pratyaksa is the sole pramâna that is so accepted by all schools, since
Lokâyata rejects anumâna, while Buddhists accept anumâna but reject sabda or
authoritative testimony, though Nayyâyikâ-s accept all three, and add the fourth category
of analogy (upamâna). 

The pratyaksa enters explicitly also into mathematical rationale, in the Indian way of
doing mathematics from the time of the sulba sûtra-s (c. –600 CE),7 through Aryabhata
(c. 500 CE)8 and up to the time of the Yuktibhâsâ (c. 1530 CE).9 For example, the
geometry of the sulba sûtra-s, as the name suggests, involves a rope (sulba) for
measurement. Aryabhata defines water level as a test of horizontality, and the plumb
line as the test of perpendicularity (Ganita 13):  

The level of ground should be tested by means of water, and verticality by means of a plumb.

The Yuktibhâsâ proves the ‘Pythagorean’ ‘theorem’10 in one step, by drawing a diagram
on a palm leaf, cutting along a line, picking and carrying. The rationale is explained in
the accompanying figure: the figure is to be drawn on a palm leaf, and, as indicated, it
is to be measured, cut, and rotated. The details of this rationale are not our immediate
concern beyond observing that drawing a figure, carrying out measurements, cutting,
and rotation are all empirical procedures. Hence, such a demonstration would today be
rejected as invalid solely on the ground that it involves empirical procedures that ought
not to be any part of mathematical proof.

0.4 Genesis of the current notion of mathematical proof: SAS and the
empirical

Paradoxically, though the currently dominant notion of mathematical proof,  as formu-
lated by Hilbert at the turn of the century, is essentially modeled on “Euclid’s” Elements,
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the empirical is not entirely rejected in the Elements.  Hence, a brief re-examination of
the history of the Elements is in order, to illuminate the historical process by which the
empirical was eventually eliminated from Western mathematics.

Proclus of Alexandria (5th c. CE), the earliest source to mention ‘Euclid’ the geometer,
not only believed in the ‘unchanging, stable and incontrovertible’ character of mathe-
matics, he started his commentary by pointing to the persuasiveness of the Elements11

Euclid...put together the Elements…bringing to irrefragable demonstration the things which were
only somewhat loosely proved by his predecessors. 

This element—the persuasiveness of the reasoning in the Elements and its apparent
incontrovertibility—was picked up successively by Islamic and Christian rational theol-
ogy, which last abandoned the Neoplatonic and Islamic concern with equity.12 Thus, the
Elements came to be valued in the West chiefly for the orderly arrangement of the
theorems—each theorem depended only on what had been previously established as in
the present-day notion of mathematical proof—which brought the theorems of geometry
to ‘irrefragable demonstration’. The persuasiveness of the Elements was a key concern
for Islamic rational theology, and it became the sole concern for Christian rational
theology, since the unbeliever (or opponent),  who did not accept the scripture (or its
interpretation), nevertheless accepted reason. ‘Mathematically proved’ is, even today,
virtually synonymous with ‘incontrovertible’. In Christian rational theology, this was
in contrast to empirical procedures which were not ‘incontrovertible’, since the empiri-
cal world had to be regarded as contingent.13  

But, while Proclus regarded mathematics as a means of moving away from the
empirical, he did not regard mathematics as disjoint from the empirical; he did not think

Fig. 1: Rationale for the sine rule in the YuktiBhâsâ
The square corresponding to the smaller side (bhuja) is drawn on a palm leaf and placed on the square corresponding to the bigger side
(koti), as shown. The bhuja is measured off from the SE corner of the larger square, and joined to the SW corner of the larger square
and the NW corner of the smaller square. Cutting along the joining lines and rotating gives the square on the hypotenuse. This simple
proof of the ‘Pythagorean’ ‘Theorem’ involves (a) measurement, and (b) movement of the figure in space. 
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the empirical had no role at all in a proof—he thought a proof must suit the thing to be
proved.14 

Proofs must vary with the problems handled and be differentiated according to the kinds of being
concerned, since mathematics is a texture of all these strands and adapts its discourse to the whole
range of things. 

Since Proclus accorded to mathematics an intermediate status, between the gross
empirical world and the higher Platonic world of ideals, Proclus was ready to accept
the empirical at the beginning of mathematics, just as much as he was ready to accept
that diagrams had an essential role in mathematical proof, to stir the soul from its
forgetful slumber.15 Proclus thought the ‘sensible’ (visible) line in a diagram, served to
remind the viewer of an ‘intelligible’ line—hence the ‘sensible’ line could not possibly
be substituted by a beer mug, which would remind the viewer of something else. There-
fore, historically speaking, until the 20th century CE the Elements had at least one
essential reference to the empirical in Proposition I.4.

This reference to the empirical in Elements I.4 was subsequently eliminated following
Hilbert16 and Russell17  etc. who suggested that ‘Euclid’ had made a mistake in proving
the theorem. Hence, that theorem  was incorporated as the SAS postulate, today taught
in school geometry.18 The theorem asserts that if two sides and the included angle
(Side-Angle-Side) of one triangle are equal to those of another triangle, then the  two
triangles are equal (‘congruent’ in Hilbert’s terminology, which bypassed also the
political significance of equity in the Elements, which was a key aspect of the Elements
for Neoplatonists and Islamic rational theologians). The proof of this theorem, as
actually found in the MSS of the Elements, involves picking one triangle, moving it and
placing it on top of the other triangle to demonstrate the equality—an empirical
procedure similar to that used in the Yuktibhâsâ proof of the ‘Pythagorean’ ‘Theorem’.
The proofs of subsequent theorems of the Elements, however, avoid this empirical
process, with the possible exception of (I.8). 

The question before us is this: is it legitimate to accept the empirical at one point in
mathematical discourse, and to reject it elsewhere?  

From the point of view of Proclus, the appeal to the empirical in the proof of I.4 was
acceptable, since proofs must be differentiated according to the kinds of being, and the
empirical was the starting point of mathematics, though not its goal. Empirical proce-
dures were therefore acceptable in proofs at the beginning of mathematics, though the
proofs of subsequent propositions must move away from the empirical, to suit the
objectives of mathematics. For Hilbert, who sought the standardisation and consistency
suited to an industrial civilization, a notion of mathematical proof that varied according
to theorems, or ‘kinds of beings’, was not acceptable. Indeed, in Hilbert’s time, in the
West, industrialisation was practically synonymous with civilization, as in the statement
“Civilization disappears ten metres on either side of the railway track in India”.  So it
is no surprise that Hilbert’s view of mathematics was entirely mechanical19—where
Proclus sought to persuade human beings, Hilbert sought to persuade machines!
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Hilbert’s notion of proof, therefore, had to be acceptable to a machine; a proof had to
be so rigidly rule-bound that it could be mechanically checked—an acceptable proof
had to be acceptable in all cases. Hence, exceptions do not prove the rule, a single
exception disproves the rule—a belief that is the basis also of Popper’s criterion of
falsifiability. Hence, Hilbert et al chose to reject as unsound the proof of Elements I.4.

In rejecting the traditional demonstration of Elements I.4, Hilbert also reflected the
then-prevalent Western view, which doubted the role of measurement, and the empirical
in mathematics. Picking and carrying involves movement in space, and it was thought
that movement in space may deform the object, much as a shadow moving over uneven
ground may be deformed. The avoidance of picking and carrying in the proofs of the
subsequent theorems in the Elements was interpreted, by the 20th century CE, as an
implicit expression of doubt about the very possibility of measurement. It was argued
against Helmholtz that measurement required (a) the notion of motion; furthermore this
motion must be without deformation, so that it required (b) the notion of a rigid body,
and neither of these was the proper concern of geometry, which ought to be concerned
only with motionless space.  (The notion of rigid body depends on physical theory; e.g.
the Newtonian notion of rigid body has no place in relativity theory, for such a rigid
body would allow signals to propagate at infinite speed.)

Since measurement, e.g. of length, involves moving one object to bring it in coin-
cidence with another, the doubt about measurement was expressed as a doubt about (a)
the role of motion in the foundations of mathematics, and (b) the possibility and meaning
of motion without deformation. In favour of (a) the authority of Aristotle was invoked
to argue that motion concerned astronomy, and that mathematics was ‘in thought
separable from motion’. The authority of Kant was implicitly invoked to argue that
motion was not a priori, but involved the empirical, and hence could not be part of
mathematics. All these worries are captured in Schopenhauer’s criticism of the
‘Theonine’ Axiom 8 (corresponding to the ‘Heiberg’ Common Notion 4) which supports
SAS: 

…coincidence is either mere tautology, or something entirely empirical, which belongs not to pure
intuition, but to external sensuous experience. It presupposes in fact the mobility of figures; but
that which is movable in space is matter and nothing else. Thus, this appeal to coincidence means
leaving pure space, the sole element of geometry, in order to pass over to the material and empiri-
cal.20

In short, motion, with or without deformation, brought in empirical questions of
physics, and Plato, Aristotle, and Kant, all concurred that mathematics ought not to
depend upon physics, but ought to be a priori, and that geometry ought to be concerned
only with immovable space. Hence the proof of SAS (Elements, I.4) came to be regarded
as unacceptable, and the status of SAS was changed from a theorem to a postulate. 

C. K. Raju Computers, mathematics education, Yuktibhâsâ 7



0.5 The Epicurean Ass 

As already observed above, the requirement of a consistent notion of proof limited
Hilbert’s options. If an appeal to the empirical is permissible in the proof of one theorem
(Elements, I.4) then why not permit an appeal to the empirical in the proof of all
theorems? Why not permit triangles to be moved around in space to prove the
‘Pythagorean’ theorem (Elements, 1.47), as in the Yuktibhâsâ proof? Why not permit
length measurements? Accepting the empirical as a means of proof  (or even introducing
a measure of length axiomatically, as done by Birkhoff21),  greatly simplifies the proofs
of the theorems in the Elements. In fact, so greatly does it simplify the proofs that it
makes most of the theorems of the Elements obvious and trivial! Since the indigenous
Indian tradition of geometry relied on measurement, one strand of Indian tradition
rejected the Elements as valueless from a practical viewpoint, until the mid-18th century
when they were first got translated from Persian into Sanskrit by Jaisingh. 

That the Elements are trivialised by the consistent acceptance of the empirical,
definitely was the basis of the objections raised by the Epicureans, who may be regarded
as the counterpart of the Lokâyata, in Greek tradition.  The Epicureans argued, against
the followers of ‘Euclid’ that the theorems of “Euclid’s” Elements were obvious even
to an ass. They particularly referred to Elements I.20 which asserts: in any triangle the
two sides taken together in any manner are greater than the third. The Epicureans argued
that any ass knew the theorem since the ass went straight to the hay and did not follow
a circuitous route, along two sides of a triangle.  Proclus replied that the ass only knew
that the theorem was true, he did not know why it was true. 

The Epicurean response to Proclus has, unfortunately, not been well documented. The
Epicureans presumably objected that mathematics could not hope to explain why the
theorem was true, since mathematics was ignorant of its own principles. They presumab-
ly quoted Plato (Republic, 533)22

geometry and its accompanying sciences…—we find that though they may dream about real exist-
ence, they cannot behold it in a waking state, so long as they use hypotheses which they leave un-
examined, and of which they can give no account.  For when a person assumes a first principle
which he does not know, on which first principle depends the web of intermediate propositions and
the final conclusion—by what possibility can such mere admission ever constitute science? 

It is to this objection that Proclus presumably responds when he asserts that Plato does
not declare that

mathematics [is] ignorant of its own principles, but says rather that it takes its principles from the
highest sciences and, holding them without demonstration, demonstrates their consequences. 23

This appeal to Plato’s authority, and to the Platonic gradation of the sciences, is
obviously inadequate to settle the issue—for the Lokâyata would reject as non-science
what Plato regards as the ‘highest science’ (though they would have agreed with Proclus
about equity). Contrary to Plato, the Lokâyata would insist that mathematics must take
its principles from the empirical world of sense-perceptions, a move that would also 
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destroy the difference between mathematics and physics in current Western philosophi-
cal classification.  

Though Proclus has gone largely unanswered down the centuries, presumably because
no Epicureans were left to respond to him, the present paper will provide an answer from
the perspective of traditional Indian mathematics. 

0.6 Mathematics as calculation vs mathematics as proof

The trivialisation of the Elements by the acceptance of the empirical can be viewed from
another angle: what is mathematics good for? why do mathematics? As already stated,
Proclus explains at great length in his introduction to the Elements that though (a)
mathematics has numerous practical applications, (b) mathematics must be regarded
primarily as a spiritual exercise. Thus, Proclus states: 

Geodesy and calculation are analogous to these sciences [geometry, arithmetic], …[but] they dis-
course not about intelligible but about sensible numbers and figures. For it is not the function of
geodesy to measure cylinders or cones, but heaps of earth considered as cones and wells con-
sidered as cylinders; and it does not use intelligible straight lines, but sensible one, sometimes
more precise ones, such as rays of sunlight, sometimes coarser ones, such as a rope or a carpenter’s
rule.24

Clearly, for Proclus, the practical applications of mathematics were its lowest applica-
tions involving ‘sensible’ objects rather than ‘intelligible’ objects: 

instead of crying down mathematics for the reason that it contributes nothing to human needs—for
in its lowest applications, where it works in company with material things, it does aim at serving
such needs—we should, on the contrary, esteem it highly because it is above material needs and
has its good in itself alone.25 

This echoes the Platonic deprecation of the applications of mathematics (Republic,
527):26 

They talk, I believe in a very ridiculous and poverty-stricken style, for they speak invariably of
squaring and producing and adding, and so on, as if they were engaged in some business, and as if
all their propositions had a practical end in view: whereas in reality I conceive that the science is
pursued wholly for the sake of knowledge

Plato clearly thought of mathematics-as-calculation as distinctly below mathematics-as-
proof, and this Platonic valuation led to the implicit valuation of pure mathematics as
superior to applied mathematics, and to the resulting academic vanity of pure mathe-
maticians, who regarded (and still regard) themselves as superior to applied mathe-
maticians—a vanity so amusingly satirized in Swift’s Gulliver’s Travels. 

In traditional Indian mathematics, however, there never was such a conflict between
‘pure’ and ‘applied’ mathematics, since the study of mathematics never was an end in
itself, but always was directed to some other practical end. Geometry, in the sulba sûtra
was not directed to any spiritual end, but to the practical end of constructing a brick
structure. Contrary to Plato, calculation was valued and taught for its use in commercial
transactions, as much as for its use in astronomy and timekeeping. Proof was not absent,
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but it took the form of rationale for methods of calculation. The methods of calculation
were regarded as valuable, not the proofs by themselves—there was no pretense that
rationale provided any kind of absolute certainty or necessary truth. Rationale was not
valued for its own sake.  Hence, rationale was not considered worth recording in many
of the terse (sûtra-style) authoritative texts on mathematics, astronomy, and time-keep-
ing. On the other hand, rationale was not absent, but was taught, as is clear, for example,
from  the very title Yuktibhâsâ, or in full form, the GanitaYuktiBhâsâ, which means
‘discourse on rationale in mathematics’.   

0.7 The epistemological discontinuity

These differing perceptions of the nature and purpose of mathematics had interesting
consequences when the two streams of mathematics collided. It is natural that those who
valued the practical applications of mathematics—the Florentine merchants—played a
major role in importing the Indian techniques of calculation into Europe, as algorismus
texts. (Algorismus, as is well known,  is a Latinization of al Khwarizmi.) The mathe-
matical epistemology underlying the algorismus texts—Latin translations of al
Khwarizmi’s Arabic translation of Brahmagupta’s Sanskrit manuscript—contrasted
sharply with the medieval European view of mathematics, and the contrasting epis-
temologies led to major difficulties, such as the difficulty in understanding sûnya—non-
representable—ultimately interpreted as zero. Though the practical applications of
mathematics were valued de facto in the West, so enormous were the difficulties that
the West had in understanding the Indian tradition of mathematics, that the acceptance
of algorismus texts in Europe took around five centuries,27 from the first recorded
algorismus text by the 10th c. CE  Gerbert (Pope Sylvester II) to the eventual triumph
of algorismus techniques as depicted on the cover of Gregor Reisch’s Margarita
Philosophica.28 Indeed, the British Treasury continued to use the competing abacus
techniques as late as the 18th c. CE, until, in the 19th c. CE, the practice was forcibly
ended by burning all tally sticks, in the process also burning down the British parliament!

It is less well known that a similar epistemological discontinuity arose in connection
with the calculus. The ‘Pythagorean’ theorem is merely the starting point of the
Yuktibhâsâ which goes on to develop infinite series expansions for the sine, cosine and
arctan functions, nowadays known as the ‘Taylor’ series expansions, to calculate very
precise numerical values for the sine and cosine functions. In the 16th c. CE,  Indian
mathematical and astronomical manuscripts engaged the attention of Jesuit priests,29

because of their practical application to navigation through astronomy and timekeeping.
Christoph Clavius, who reformed the Jesuit mathematical syllabus at the Collegio
Romano, emphasized the practical applications of mathematics. A student and later
correspondent of the famous navigational theorist Pedro Nunes, Clavius understood the
relation of the date of Easter to latitude determination through measurement of solar
altitude at noon, as described in the texts of Bhaskara-I—the Mahâbhâskarîya and the

C. K. Raju Computers, mathematics education, Yuktibhâsâ 10



very widely distributed Laghu Bhâskarîya.30  In his role as head of the committee for
the Gregorian calendar reform, Clavius presumably received inputs from students like
Matteo Ricci whom he had trained in mathematics, astronomy and navigation. Ricci
later went to Cochin, and wrote back that he was seeking to learn the methods of
timekeeping from ‘an intelligent Brahman or an honest Moor’.31 (The Jesuits, of course,
knew Malayalam, the language of the Yuktibhâsâ, and had even started printing presses
in Malayalam by then, and were teaching Malayalam to the locals in the Cochin college,
latest by 1590.) 

The calculus was the key technique needed to determine precise sine values as in the
Yuktibhâsâ. Precise sine values were needed for various purposes in navigation—to
calculate loxodromes, for example—hence precise sine values were a key concern of
European navigational theorists, and astronomers like Nunes, Mercator, and Simon
Stevin,32 and Christoph Clavius,33 who provided their own sine tables. 

The computation of precise sine values is closely related to the numerical determina-
tion of the length of the arc. The contrasting epistemologies of Indian and Western
mathematics, however, led to another protracted epistemological struggle. For example,
Descartes declared in his La Geometrie that  determining the ratio of a curved to a
straight line was intrinsically impossible. His contemporaries, and other participants in
Mersenne’s discussion group, like Pascal and Fermat, believed to the contrary, and used
the ‘infinite series’, almost exactly as  in the Yuktibhâsâ, to calculate the length of the
arc of ‘parabolas’ of all orders. This procedure involved ‘infinitesimals’ and ‘infinities’,
and initiated the protracted epistemological struggle in Europe concerning the meaning
and nature of infinitesimals. It was only towards the end of the 19th century that
Dedekind’s formulation of the real numbers partly resolved the issues regarding in-
finitesimals, while also clearing up the implicit and less-noticed reference to the
empirical in the proof (Fig 2) of  the very first proposition in the Elements.34This  issue
of infinities and infinitesimals, by the way, is not quite settled yet. Why not use
non-Archimedean field extensions of the reals, not as in Non-standard analysis, as an
intermediate step, but really accepting infinitesimals and infinities as the case?  Nor is
the issue settled from the practical viewpoint: the δ function could only be partly
formalised in the Schwartz theory of distributions, for it does not permit the multiplica-
tion of distributions, as in δ2, which is crucial to the problem of infinities (renormaliza-
tion problem) in quantum field theory. I will not examine these more technical questions
here—the point is simply that the story of the epistemological difficulties with the
calculus has not quite reached a conclusion. 

0.8 Towards an alternative epistemology of mathematics

The present-day schism between mathematics-as-calculation and mathematics-as-proof
is one of the consequences of the above historical discontinuities and continuities: on
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the one hand the practical and empirical is rejected, on the other hand there is the
persistent attempt to assimilate practical/empirical mathematics-as-calculation into
spiritual/formal mathematics-as-proof.  Practical mathematics, as in the Indian tradition,
regarded mathematics as calculation, whereas the idea of mathematics as a spiritual
exercise has developed into the current Hilbert-Bourbaki approach to mathematics as
formal proof, which has dominated mathematical activity for most of the 20th century
CE. The attempt to assimilate practical and empirical mathematics into the tradition of
spiritual and formal mathematics has gone on now for over a thousand years.  However,
despite the apparent epistemological satisfaction provided by mathematical analysis, for
example, the calculus still remains the key tool for practical mathematical calculations,
and few physicists or engineers, even today, study Dedekind’s formulation of real
numbers, or the more modern notion of integral and derivative—either the Lebesgue
integral or the Schwartz derivative. The practical seems to get along perfectly well
without the need for any metaphysical seals of approval! 

This schism within mathematics is today being rapidly widened by the key technology
of the 20th century CE, the computer, which is a superb tool for calculation. The
availability of this superb tool for calculation has accentuated the imbalance between
mathematics-as-calculation and mathematics-as-proof. With a computer, numerical
solutions of various mathematical problems can be readily calculated  even though one
may be quite unable to prove that a solution of the given mathematical problem exists
or is unique. For example, one can today calculate on a computer the solution of a
stochastic differential equation driven by Lévy motion, though one cannot today prove
the existence and uniqueness of the solution. The advocates of mathematics-as-calcula-
tion suggest that the practical usefulness of the numerical solution—the ability to

Fig. 2: The fish figure and Elements I.1  
With W as centre and WE as radius two arcs are drawn, and they intersects the arcs drawn with E as centre and EW as radius at N and
S. The above construction, called the fish figure, is used in India to construct a perpendicular bisector to the EW line and thus
determine NS. In Elements, I.1, a similar construction is used to construct the equilateral triangle WNE on the given segment WE.
Though it is empirically manifest (pratyaksa) that the two arcs must  intersect in a point, to prove their intersection,  without appeal to
the empirical,  real numbers are required, for, with rational numbers,  the two arcs may ‘pass through’ each other, without there being
any point at which they intersect,  since there are ‘gaps’ in the arcs,  corresponding to the ‘gaps’ in rational numbers. 
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become rich through improved predictions of price variations in the stock market—over-
rides the loss of certainty in the absence of proof. The advocates of mathematics-as-proof
argue that what lacks certainty cannot be mathematics, irrespective of its usefulness. 

Is this schism in mathematics a ‘natural law’? Must useful mathematics remain
epistemologically insecure for long periods of time? Or is this state of affairs the
outcome of the actual history of mathematics? Can we understand the civilizational
tensions that have determined the actual historical trajectory of mathematics, and modify
mathematics to resolve these tensions? Can an alternative epistemology of mathematics
be found, which is better suited to mathematics-as-calculation? How should mathe-
matics be taught under these circumstances of a widening gap between mathematics-as-
calculation and mathematics-as-proof? I believe that the way to answer these questions
is to probe the alleged epistemological security of mathematics-as-proof by re-examin-
ing the very notion of mathematical proof—is mathematical ‘proof’ synonymous with
certainty?  

0.9 Summary

To recapitulate, in mathematics, the East-West civilizational clash may be represented
by the question of  pramâna vs proof: is pramâna (validation), which involves pratyaksa
(the empirically manifest), not valid proof? The pratyaksa or the empirically manifest
is the one pramâna that is accepted by all major Indian schools of thought, and this is
incorporated into the Indian way of doing mathematics, while the same pratyaksa, since
it concerns the empirical, is regarded as contingent, and is entirely rejected in Western
mathematics. Does mathematics relate to calculation, or is it primarily concerned with
proving theorems? Does the Western idea of mathematical proof capture the notions of
‘certainty’ or ‘necessity’ in some sense? Should mathematics-as-calculation be taught
primarily for its practical value, or should mathematics-as-proof be taught as a spiritual
exercise? 

1 Formal mathematics as a social construction

In attempting to resolve this civilizational clash, the key question to examine is this: are
mathematical theorems ‘necessary’, are they universal truths, or are they merely social
constructions? I will argue that the theorems of formal mathematics are social constructs,
and that belief in their validity or necessity rests on nothing more solid than social
authority. Various arguments have been given in this direction, but I regard the argu-
ments in § 1.1. below as conclusive. 
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1.0 Integers (ints) and real numbers (floats) on a computer

For the purpose of clarifying the nature of formal mathematical theorems, let us take an
apparently certain universal mathematical truth: 2+2=4. Is 2+2=4 a universal truth or is
it a social construction, hence a cultural truth? Perhaps one should first take up the easier
case of 1+1! The usual belief is that 1+1=2. One could also amplify this belief negatively,
as what 1+1 is not: if 1+1 = 2 is a universal truth, then  1+1=0 or 1+1=1 or 1+1=3 must
all be universally false. However, if 0 and 1 denote truth values, we know for instance,
that 1+1=1 holds in classical 2-valued logic, with + denoting ‘inclusive or’, 0 denoting
‘false’ and 1 denoting ‘true’.  We know that 1+1=0 holds in classical 2-valued logic with
+ denoting ‘exclusive or’. 1+1=0 is also the case if 0 and 1 denote binary digits (bits)
and + denotes addition with carry. And this case is one that is commonly implemented
thousands of times in the chips of a computer.

We see that if at all 1+1=2 is a universal truth, it is at best a qualified universal truth.
It is necessary to specify what 1, + and =  are; these are merely symbols which, lacking
any empirical reference,  could be performing multiple duties.  Today we would tend to
qualify that in 1+1=2, 1, +, =, and 2 relate to ‘natural numbers’ or to integers or to rational
numbers or real numbers. However, in current formal mathematics, since the axioms,
lacking any empirical reference, are practically arbitrary,  there can be no real restriction
on how one specifies the syntactic rules for using 1, +, =.  To return to the harder case
of 2+2, it is, for example,  perfectly possible, in current formal mathematics, to specify,
2, +, and = so that 2+2=5. Thus, let a+b=a@b@1, where @ is an unusual notation for
usual addition (socially conventional addition in ‘natural numbers’). One cannot say
that such a formal theory is useless, for like all pure mathematics it may find a use some
day. (Indeed it has a use already in philosophy for purposes of illustration!) At best one
can say that this or that mathematician, who enjoys a certain degree  of social recogni-
tion, finds it uninteresting. So the theory of numbers with 2+2=5 is not false, it is, at
worst, a way to handle numbers that some existing social authorities may find socially
uninteresting. 

What is socially interesting or uninteresting can naturally vary with the cultural
circumstances: for instance, 2+2=5 may be a socially interesting case for native South
Americans.35 

What is socially interesting or uninteresting can also vary across time with varying
technology. Computers are widely used today, but one cannot make a computer ‘under-
stand’ or work with natural numbers or real numbers. For the purposes of programming
a computer, the standard convention is that an integer (int data type) is something that
can be represented using 2 bytes or 16 bits. Setting aside one bit to represent the sign
(positive or negative) the largest (signed) integer that can then be represented is
111111111111111 (15 1’s), in binary notation, or 214+213+⋅⋅⋅+22+21+20 = 215−1= 32767.
This convention suits the 8-bit architecture; but nothing will change, except the value
of the upper limit, if we move from an 8-bit to a 128-bit machine, or use static storage,

C. K. Raju Computers, mathematics education, Yuktibhâsâ 14



with any finite number of bits. The number 32767 may change with changing technology
and changing conventions, but the point is that for any computer whatsoever there will
always be such an upper limit, so long as we are dealing with actual computers rather
than abstract Turing machines with infinite memory, which are as imaginary and
non-existent as a barren woman’s son or a rabbit with horns. 

The existence of an upper limit creates a serious problem in computer arithmetic,
relating to the Western mathematical conceptualisation of ‘natural numbers’ asserted by
Dedekind to have been given by God.  One can have 2+2=4 on a computer, but only at
the expense of admitting that
 

20,000 + 20,000 = −25536.

Anyone who disbelieves this is welcome to use the accompanying computer program
(Fig. 3) in the C language to check this out. One can represent the natural numbers
needed for all or for most practical purposes, but one cannot represent the idea of a
‘natural number’ on a computer, and one cannot represent addition according to Peano’s
axioms on a computer. It is impossible to program the syntax of natural numbers on any
actual computer. 

A desktop calculator usually manages to get the above sum right—how is this
achieved? One can get the expected answer by using floating point numbers, which
roughly correspond to real numbers. The upper limit becomes much higher, but we can
now validly have 

2+2=4.00000000000000001 (16 0’s). 

which is typically the case in a computer (which observes the IEEE  standard36 for
floating point arithmetic). From a practical point of view, this arithmetic is quite
satisfactory. From the point of view of  the current formal mathematics of real numbers,
this type of arithmetic only seems more satisfactory: serious problems arise, because the
above equation means that floating point numbers do not obey the same algebraic rules
as real numbers. The associative law, for example, fails for arithmetic operations with
floating point numbers.  Thus,

( 0.00000001 + 1 )  −  1 = 0

but 

0.00000001  +  ( 1 − 1 ) = 0.00000001

Once again, one can achieve a higher precision, one can arrange things so that in the
above equation the number of zeros dazzles the eye. One can arrange for a number of
decimal places adequate for all practical, physical, and engineering purposes.  But one
cannot bypass, in principle,  the failure of the associative law. There will always remain
not one or two but an uncountable infinity of ‘exceptions’ to the associative law for
addition. Similarly, the associative law and cancellation law for multiplication fail, and
so does the distributive law linking addition and multiplication. Hence, the numbers on
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a computer can never correspond to the numbers in the formal systems of natural
numbers or real numbers. Since computers are socially interesting, so are numbers not
corresponding to natural or real numbers. 

The other point I am trying to drive at is the following: real numbers may help to
bypass the appeal to the real world in Elements I.1, but in the real (empirical) world, as
distinct from some imagined or ideal Platonic world, there is no satisfactory way to
represent the natural or real numbers, since there is no way to represent any real number
with only a finite number of symbols. Hence also there is no satisfactory way to represent
the alleged universal truth that 2+2=4, since there is no satisfactory way to state the
required qualification that the above equation concerns natural or real numbers.  The
representation of natural numbers according to Peano’s axioms involves a super-task,

/*Program name: addint.c
Function: To demonstrate how a computer adds integers
*/

#include <stdio.h>
#include <conio.h>

void main (void)
{

int a, b, c;
printf (“\n Enter a = ”);
scanf (“%d”, &a);
printf (“\n Enter b = ”);
scanf (“%d”, &b);
c = a+b;
printf (“\n %d + %d = %d”, a, b, c);
getch();
return;

}

Program Input and Output: 

Enter a = 20000
Enter b = 20000
20000 + 20000 = -25536

Fig. 3: A C program to add two integers
The above C program shows how a computer adds two integers. If the program is compiled and run, the program output will be as
shown.  It is possible to do arithmetic to larger precision, but it is impossible to do the arithmetic of Peano’s natural numbers  on a
computer.  
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an infinite series of tasks, usually hidden by the ellipsis, but made evident by computer
arithmetic, which can hence never be the arithmetic of Peano’s natural numbers or
Dedekind’s real numbers.

For practical purposes, no super task is necessary: the representation of numbers on
a computer is satisfactory for mathematics-as-calculation, but it is unsatisfactory or
‘approximate’ or ‘erroneous’ from the point of view of mathematics as proof.  Indian
mathematics, which dealt with ‘real numbers’ from the very beginning (√2  finds a place
in the sulba sûtra-s), does not represent numbers by assuming  that such supertasks can
be performed, any more than it represents a line as lacking any breadth, for the goals of
mathematics in the Indian tradition were practical not spiritual. The Indian tradition of
mathematics worked with a finite set of numbers, similar to the numbers available on a
computer, and similarly adequate for practical purposes. Excessively large numbers, like
an excessively large number of decimal places after the decimal point, were of little
practical interest. Exactly what constitutes ‘excessively large’ is naturally to be decided
by the practical problem at hand, so that no universal or uniform rule is appropriate for
it.

On the other hand, theoretically speaking, formal Western mathematics is not formu-
lated with a view to solving practical problems: it treats both natural and real numbers
from an idealist standpoint, hence it runs into the difficulty with supertasks, made
evident by computer arithmetic.  

To take stock, Plato and Proclus rejected the practical and empirical as valueless
relative to the ideal; subsequent developments stripped away the spiritual and political
content of Neoplatonic mathematics; formal mathematics has discarded also meaning
and truth. The result is a formulation of elementary arithmetic which involves a
supertask which no supercomputer will ever be able to perform. If mathematics ex-
clusively concerns the impractical, the imaginary, the meaningless, and the arbitrary,
then of what value is mathematics? Why should one continue to accept Plato’s injunction
to teach this sort of mathematics to one’s children? The only potentially valuable element
left in Western mathematics, today, is the notion of ‘proof’. The notion of ‘proof’ is the
fulcrum of Western mathematics—the whole edifice of 20th century mathematics has
been made to rest on the notion of mathematical proof.

1.1 The cultural dependence of logic

One can enquire into the nature of this ‘proof’ or criterion of validity. One can enquire
into the cherished belief that mathematical proof involves only reason or logical
deduction, which is universal and certain—for it is this belief which makes the notion
of mathematical proof potentially valuable.  Can one even maintain universality for the
criteria of validity? Can one assert that there is a necessary relation between the
meaningless and unreal assertion 2 + 2 = 4, and the arbitrary set of axioms known as
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Peano’s axioms?  The short answer is no. The validation of 2 + 2 = 4 requires proof—one
is able to prove 2 + 2 = 4 from Peano’s axioms. But this proof relies on modus ponens;
and modus ponens implicitly involves a notion of implication that requires 2-valued
logic.37 Thus, the entire value of formal Western mathematics rests on the belief in the
universality of a 2-valued logic.

However, a 2-valued logic, as I have repeatedly stressed,38 is not universal. The belief
in a truth-functional 2-valued logic was denied by the Buddhists and Jains,  for ex-
ample.39 Walshe40 refers to this as ‘the four “alternatives” of Indian logic: a thing (a)
is, (b) is not, (c) both is and is not, and (d) neither is nor is not.’ This logic of four
alternatives, certainly did not apply to all Indian logic, but it was frequently used by
Nagarjuna in his famous tetralemma (catuskoti). This logic is illustrated by the following
example from the Brahmajâla Sutta of the Dîgha Nikâya. This Sutta records the
Buddha’s discourse against various wrong views. The Buddha described four wrong
views concerning the nature of the world—whether it is finite or infinite—whose
adherents claim as follows.41  

“…I know that the world is finite and bounded by a circle.” This is the first case.…“…I know that
this world is infinite and unbounded”. This is the second case. And what is the third way?…“…I
…perceiv[e] the world as finite up-and-down, and infinite across. Therefore I know that the world
is both finite and infinite.” This is the third case. And what is the fourth case? Here a certain as-
cetic or Brahmin is a logician, a reasoner. Hammering it out by reason, he argues: “This world is
neither finite nor infinite. Those who say it is finite are wrong, and so are those who say it is in-
finite, and those who say it is finite and infinite. This world is neither finite nor infinite.” This is
the fourth case. These are the four ways in which these ascetics and Brahmins are Finitists and In-
finitists….There is no other way.

 The four wrong views about the world, described by the Buddha are

(1) The world is finite.
(2) The world is not finite.
(3) The world is both finite and infinite.
(4) The world is neither finite nor infinite.

The semantic interpretation of (3) is that the world is finite up-and-down and infinite
across. The semantic interpretation of (4) is that all three of the preceding  views are
wrong; it is said to be “hammered out by reason”. A fifth possibility was explicitly
denied, though such a  belief, too, was in vogue. Later on in the same Brahmajâla Sutta,
the Buddha, like Ajatasattu, again rejects the use of more than four possibilities,
describing them by the epithet:  the ‘Wriggling of the Eel’.42  

Not too much should be read into the particular semantic interpretation for the case
(3) above. Thus, Nagarjuna,  in his famous tetralemma (catuskoti) puts forward the
proposition:43 

Everything is
such
not such
both such and not such
neither such nor not such.
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The writings of Dinnaga44 on this point are a bit obscure, particularly because a key
work (Hetucakra; “Wheel of Reason”) is preserved only in the Tibetan, and in the works
of Nayyâikâ opponents, and there seems to be a serious difference of opinion regarding
its translation—a point on which I am not qualified to comment. While Dinnaga had no
doubt introduced logical quantification, it seems to me necessary to grant that the
quantification was based on a non-Aristotelian logic. In this connection, I would like to
point to the last stanza of the Hetucakra. Matilal45 accepted that the standard negation
does not fit Buddhist logic.  

My own reading is that Buddhist logic is quasi truth-functional, and that this quasi
truth-functionality of the underlying logic is closely related to the structure of time or
the structure of the instant implicit in the Buddhist thesis of paticca samuppada, which,
as the Buddha stated, is the key to the dhamma.  Since I have amplified on this elsewhere,
I will not go into the details here. 

The Jaina logic46 of  syâdavâda involves seven categories instead of Buddha’s four
and Sanjaya’s five. The system is attributed to the commentator Bhadrabâhu. Jaina
records and literature mention two Bhadrabâhu-s who lived about a thousand years apart.
Between the two sects of the Jains there is no agreement as to the date of the later
Bhadrabâhu, who may have lived as early as the 4th or as late as the 5th-6th century,  as
his elaborate ten-limbed syllogism suggests, and if he really was the brother of the
astronomer Varahamihira, whose work on astronomy is securely fixed at 498.  The word
syat  may be translated as ‘may be’, or as ‘perhaps’, corresponding to shâyad in
Hindustani.  Hence, syâdavada could be taken to mean ‘perhaps-ism’ or ‘may-be-ism’
or ‘discourse on the may be’. Uncertainty requires the making of judgments (naya). The
seven-fold judgments (saptabhanginaya) are: (1) syadasti (may be it is), (2)  syatnasti
(may be it is not), (3) syadasti nasti ca (may be it is and is not), (4) syadavaktavyah
(may be it is inexpressible [=indeterminate]), (5) syadasti ca avaktavyasca (may be it
is and is indeterminate), (6) syatnasti ca avaktavyasca (may be it is not and is indeter-
minate), (7) syadasti nasti ca avaktavyasca (may be it is, is not, and is indeterminate).
(According to some there is an eighth category (8) vaktavasya avaktavasyaca.)

Haldane’s47 interpretation of Bhadrabahu’s48 syâdavâda is readily seen to correspond
to the semantics of a three-valued logic. But Haldane achieves this by introducing a
temporal separation between the assertions A and ∼ A. As everyone knows, in  2-valued
logic,  A∧∼ A ⇒ B for any B. The contradiction and resulting trivialization can be avoided
by introducing a temporal separation between A  and ∼ A, as Haldane does: there is
nothing paradoxical about Schrödinger’s cat being alive now, and dead a little while
later.  

I believe, however, that if temporal considerations are to be introduced, they may as
well be introduced in a full-fledged way, so that one must then take into account also
the differing notions of time and identity in the Buddhist and Jaina tradition.49 If one
does take into account the structure of time implicit in the Buddhist notion of instant
and conditioned coorigination (paticca samuppâda), then the natural logic to adopt is a
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quasi truth-functional logic, and in this case, one can meaningfully assert A∧∼ A  to hold
simultaneously, i.e., at one instant of time. I believe quasi truth-functionality applies
also to quantum logic,50 and that this quasi truth-functionality of logic is related to the
empirical structure of time at the microphysical level, and particularly to the existence
of micropysical time loops, but I will not elaborate further on the basis of microphysical
time loops, or my physical theory here.  

The point of bringing in quantum logic is this: if one does eventually  decide to appeal
to the empirical, in support of logic, a 2-valued logic need not be the automatic choice.
Consider a meaningful but apparently contradictory proposition of the form: “This pot
is both red and black”. The contradiction may be resolved by decomposing the proposi-
tion into the propositions: “This part of the pot is red”, and “That part of the pot is black”.
However, if the statements refer to the empirical, as we have now supposed, such a
decomposition may end up referring to ever smaller physical parts of the object. Thus,
moving to atomic propositions may also drive one to the atomic domain in the physical
world, where quantum mechanics certainly does apply. Thus, one might perhaps need
to start with a quantum logic as the empirical basis of logic, so that no conclusion could
be drawn from the statement that Schrödinger’s cat is both dead and alive. (In 2-valued
logic, any conclusion could be drawn from this statement.) Specifically,  the logic of the
empirical world should not be regarded as a settled issue, solely on the basis of mundane
experience.

In any case, there is no case for the ‘universality’ of the logic underlying present-day
mathematics and metamathematics. The alleged universality of 2-valued logic fails
across cultures, and it may well fail empirically.  2-valued logic may perhaps even fail
as an industrial standard, for the internal logic of industrial capitalism drives technologi-
cal innovation, and a 2-valued logic does not apply to the formal semantics of parallel
computing languages like OCCAM—which concern many parallel worlds (processors)
in each of which a given statement may have independent truth values. Nor does a
2-valued logic apply to quantum computers. (Quantum computers have been shown to
be empirically viable, even if they cannot today be mass-marketed.) 

If the logic underlying modern-day formalistic mathematics were to be changed, that
would, of course, change also the valid theorems, as intuitionists demonstrated long ago.
Hence, not only are the axioms of a formal mathematical theory arbitrary, but the
allegedly universal part of mathematics—the relation of axioms to theorems through
‘proof’—is arbitrary since this notion of ‘proof’ involves an arbitrary choice of logic.
Logic is the key principle used to decide validity in formal mathematics, but it is not
clear how this principle is to be fixed without bringing in either empirical or social and
cultural considerations. 

We see that the ‘universal’ reason of the schoolmen was underpinned by the alleged
authority of God to which the schoolmen indirectly laid claim. If this authority is denied,
as Buddhists inevitably would, there is nothing except practical and social authority that
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can be used to fix the logic used either within a formal theory or in a metamathematics
that rejects appeal to the empirical 

To summarise, all of present-day formal mathematics, in practice, or in principle,
depends upon social and cultural authority; for whether or not a proposition is a
mathematical theorems depend upon Hilbert’s notion of mathematical proof, and that
notion of mathematical proof requires 2-valued logic which is not universal, but depends
upon social and cultural authority. Thus formal mathematics of the Hilbert-Bourbaki
kind is entirely a social and cultural artefact. Proof or deduction provides only a social
and cultural warrant for making cultural truth-assertions, it does not provide certain or
secure knowledge.51  

1.2 The role of the empirical

It is possible, of course, to argue that 2-valued logic has social approval just because it
is a matter of mundane empirical observation. But such arguments would hardly suit the
20th century Western vision of mathematics-as-proof, because once the empirical has
been admitted at the base of mathematics, to decide logic itself, by what logic can it be
excluded from mathematics proper? If the empirical world provides the basis of logic,
why should the empirical be excluded from the process of logical inference? If the
validity of anumâna is based on pratyaksa, why should the pratyaksa be excluded from
valid anumâna. 

Accepting the empirical may well make mathematics explicitly fallible, like physics.
No one denies  the fallibility of the empirical: as when one mistakes a rope for a snake
or a snake for a rope. However, it seems to me manifest that social authority (e.g. that
of Hilbert and Bourbaki)  is more fallible than empirical observation. I regard the
pratyaksa as more reliable than sabda or authoritative testimony.  Accordingly, I regard
mathematics-as-calculation, based on the empirical, as more reliable, more secure, and
more certain than mathematics-as-proof, which bypasses the empirical altogether. 

To return to 2 + 2 = 4, the particular case of 2 + 2 = 4 still remains persuasive because,
for example, 2 sheep when added to 2 sheep usually make 4 sheep (though they may
produce any number of sheep over a period of time).  However, this involves an appeal
to mundane human experience, it involves an appeal to the empirical, not the a priori. 

Mundane experience may not be universal, but it is more universal than the a
priori—there is less disagreement about mundane physical things than there is about
metaphysics.  Thus, the way to make mathematics  more universal, and the way to evolve
an East-West synthesis is to accept the empirical in mathematics. The best  route to
universalisation through an East-West synthesis is through everyday experience,
through physics rather than metaphysics, through shared experience rather than shared
acceptance of the same arbitrary social authority. Stable globalisation needs pramâna
rather than proof!
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2 Social change and changing social construction: the case
of sûnya

The above argument being abstract, a concrete example (drstanta) is in order. If
mathematics is a social construction, then one can expect mathematics to change with
changing technology and changing social circumstances. Can one point to instances of
such change? Clearly that part of mathematics is most susceptible to change which is
furthest away from the empirically manifest or pratyaksa. 

To bring this out, let us consider something for which there is no obvious empirical
reference, such as division by zero. From the East-West point of view, 0 is a particularly
interesting case. We know that 0 traveled from India to Europe via the algorismus texts,
starting 10th c. CE, and that the epistemological assimilation of 0 required some five to
six hundred years. As late as the late 16th century CE we find mathematicians in Europe
worrying about the status of unity as a number, and the following question was still
being  used as a challenge problem: “Is unity a number?” The expected answer was that
unity was not a number, but was the basis of number. With the changed social cir-
cumstance, those metaphysical concerns about the status of unity now merely serve to
amuse us, and zero is now firmly regarded as a number, an integer. However, the nature
of zero has changed. 

Thus, Brahmagupta maintained that 0 ⁄ 0 = 0. This is something that a modern-day
mathematician will immediately regard as an error, for division by zero is not permitted.
In current day formal mathematics, 0 is the additive identity; hence, for any number x,
from the distributive law, 0⋅x = (0 + 0)⋅x = 0⋅x + 0⋅x, so that  0⋅x = 0. Thus 0 cannot have
a multiplicative inverse. Hence one cannot divide by zero, for division is nothing but
the inverse of multiplication. Hence, Datta and Singh52 assert that Brahmagupta was
mistaken. At a conference on sûnya,53 almost all the participants agreed with this
perception of Datta and Singh. (I was the exception.) This goes to show the extent of
acculturation, but not, of course, the universal validity of the belief. The above proof of
the illegitimacy of division by zero tacitly assumes that the numbers in question must
form a field, but as we have already seen, this is not the case for numbers on a computer,
where the distributive law, used in the above proof, fails. 

As a matter of fact, there are, even in current mathematics, common situations where
0 ⁄ 0 = 0 may be implicitly used as part of the arithmetic of extended real numbers. Thus,
consider the Lebesgue  integral. 

(1)     ∫ 
0

1

  
1

√x
dx=1

The integrand is ill behaved only when x = 0, when the denominator becomes zero. Since
the integral is a Lebesgue integral rather than a Riemann integral, we do not omit 0 from
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the region of integration, but appeal to the rules of the extended real number system,54

which admits the additional symbols  ∞, −∞. 

Now, either the limit

lim
x→0

   
1

√x
 = ∞,  

or the corresponding unwritten convention

(2)  1 ⁄ 0 = ∞
allows us to regard the integrand as

f(x) = 







1
√x

,   x≠0

∞,   x=0

However, the integrand is infinite only at a single point, i.e., it is infinite only  on a set
of Lebesgue measure zero. Hence, we appeal to the standard convention, used in the
theory of the Lebesgue integral, that55  

(3) 0⋅∞ = 0. 

We see that (1), (2) and (3)  together amount to saying that 0 ⁄ 0 = 0. I would emphasize
that the convention (3) 0⋅∞ = 0 is a very important convention, for one cannot do
modern-day probability theory or statistics without it; a statement that is true with
probability one, i.e., true except on a set of probability zero, is said to be true almost
everywhere, and almost everywhere occurs almost everywhere in current probability
theory. Thus,  0 ⁄ 0 = 0 is certainly not a convention every use of which is necessarily
incorrect.  This was presumably believed to be so in 1937, by Datta and Gupta, but we
now have good reasons for admitting the convention, at least in some situations—
reasons relating both to mathematical practice and to computer arithmetic. But can one
make 0 ⁄ 0 = 0 a universal rule? That depends, in the first place, on what one means by
0.

Under different social and cultural circumstances, zero was regarded differently. As I
have argued elsewhere,56 in Brahmagupta’s case, sûnya or 0 is not the additive identity
in a field, but refers to the non-representable, in line with the meaning given to it in the
sûnyavâda of Nagarjuna. With calculations involving a representable, hence a finite set
of numbers, such non-representable numbers are bound to arise, and some rule is needed
to handle these cases. Brahmagupta’s rule should be read as 

nr ⁄ nr = nr, 

where nr=non-representable.

We see that changed social circumstances have transformed the notion of zero, but
further changes could change it further. As observed above, computers can represent
only a finite set of numbers. Hence, exactly this problem of dealing with non-repre-
sentable numbers arises in computing. Here, too, we have a situation very similar to
nr ⁄ nr = nr,  as can be seen by writing and executing the accompanying short C program
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(Fig. 4).  In accord with Western mathematical sensibilities, the IEEE standard, however,
permits a few different types of non-representables. Anything smaller in absolute value
than 1.40130e-45 is non-representable,  and is represented by zero.  Anything larger
than 3.37e+38 is non-representable, but is represented by +INF, while anything smaller
than -3.37e-38  is represented by -INF.  Even though the associative and distributive
laws fail for numbers on a computer, in accordance with prevalent Western mathematical
conventions, the IEEE standard specifies that arithmetic operations involving non-rep-
resentables, such as 0 ⁄ 0 always lead  to an undefined result, which is treated as an error.
(This is not the full story, and there are other kinds of non-representables. Indeed, by
uncommenting the line marked ‘uncomment’, i.e., removing the first pair of /* and */
in that line,  and providing the inputs a = 2.0e-45 and b = 4.0e-45, one can actually make
the computer print out the statement 0.00000/0.00000 = 0.00000! But this is not
something that needs to be taken seriously.)

How satisfactory are the IEEE specifications that 0 ⁄ 0 = 0 always is an error? If we
look upon this as a practical matter of making efficient calculations then a universal rule
of the kind that one has in current day computing is not the most efficient. For example,
in a practical situation, even if something is treated as non-representable, we might yet
know that it is the same non-representable as one that was previously encountered. In
that case, we may even want to apply the cancellation law to zero! We might want to
say 

2⋅1046

4⋅1046
 = 1⁄2.

But this is a statement that the IEEE standard regards as erroneous for floats (real
numbers represented in single precision), as the accompanying C program shows.
According to that standard, the correct statement is:

2⋅1046

4⋅1046
 = Floating  point  error

Accordingly, the computer treats the attempt to carry out the above calculation as
erroneous, though anyone can see what the valid answer is.  Thus, the attempt to
eliminate one kind of absurdity (that might arise out of a wrong use of 0 ⁄ 0=0) leads to
another kind of absurdity.  

A machine cannot discriminate between a ‘legitimate’ use of 0 ⁄ 0=0, and an
‘illegitimate’ use: it cannot easily handle exceptional situations, it needs a universal rule,
and this universal rule may lead to other absurdities. Though the IEEE has regarded the
latter absurdity as more acceptable, this could change with circumstances. The conven-
tions may change not only with who lays down the standard, but also with who performs
the calculation: for human arithmetic, as distinct from machine arithmetic, we may use
rules which permit exceptions. This is exactly how Bhaskara II interprets Brahmagupta’s
rule while computing the value of x (= 44), given that57 
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/*Program name: sunya.c */
/*Function: To show how a computer handles non-repre-
sentable numbers according to the IEEE standard */

#include <stdio.h>
#include <conio.h>
#include <values.h>
main()
{

float a, b, c;
a =  MAXFLOAT;
b =  MINFLOAT;
printf (“a = %e, b= %e”, a, b);
getch();

/*Now try putting in values of a, and b, larger than
MAXFLOAT or values of b smaller than MINFLOAT */

printf (“\n\n Enter a = ”);
scanf( “%f”, &a);
printf (“a = %f”, a);
printf (“\n Enter b = ”);
scanf (“%f”, &b);
printf (“b = %f”, b);
c = a/b;
printf (“%e/%e = %e”, a, b, c);

/*printf (“%f/%f = %f”, a, b, c);*/ /*uncomment*/
getch();
return 0;

}

Program Input and Output:
a = 3.37000e+38
b = 8.43000e-37
Enter a = 1e40
a = +INF
Enter b = -1e40
b = -INF
Floating point error: Domain

Fig. 4: How a computer handles the non-representable

The above program illustrates how a computure handles non-representable numbers. 1e40 denotes the number 1040, while -1e40
denotes te number −1040. Instead of saying that a⁄b=−1, the computer states that there has been an error. 
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x ⋅ 0 +  
x ⋅ 0

2
0

 = 63

This suggests that, when we go beyond the empirical, the ‘universal’  may lie, as in a
physical theory, in what Poincaré called ‘convenience’. This criterion of ‘convenience’
can have profound consequences as in the case of the theory of relativity: the constancy
of the speed of light is not an empirical fact (though elementary physics texts usually
misrepresent it as such), Poincaré defined the speed of light as a constant as a matter of
‘convenience’. I see this criterion of ‘convenience’ as more modest than the criterion of
beauty which seeks to globalize a local sense of aesthetics. 

3 History of the calculus

If mathematics is a social construct, which changes with changing social circumstances,
then the question is: how should one teach mathematics today? Admitting the role of
technology in shaping mathematics, accepting that the computer is going to play an
increasingly important role in the future, and admitting that formal mathematics is not
quite suited to computers, the conclusion seems to be forced that a different type of
mathematics should be taught. The calculus is at the core of many numerical computa-
tions, but can one at all do the calculus without real numbers? An alternative mathemati-
cal epistemology could be invented ab initio.  Or one could fall back on the alternative
epistemology of mathematics in India, as described in the Yuktibhâsa. This alternative
epistemology provided  the natural  soil in which the calculus grew. Recognizing the
existence of this alternative epistemology of mathematics requires, however, an alter-
native account of the history of mathematics. This is an illustration of the general maxim
that the history of mathematics has profoundly influenced its philosophy, so that to
change the philosophy of mathematics, one must also revise its history. A condensed
account of the suggested revision follows. 

According to the Western history of the calculus, the calculus was the invention of
Leibniz and Newton, particularly Newton, who used it to formulate his ‘laws’ of physics.
In a series of papers, I have pointed out that this narrative needs to be significantly
changed for several reasons. 

(a) The key result of the calculus, attributed variously to Gregory,58 Newton, and to
Newton’s student Brook Taylor,59 is the infinite-series expansion today commonly
known as the Taylor’s series expansion. This infinite series expansion is found in India
a few centuries before Newton in the work of Madhava of Sangamagrama and in the
later works like Nilkantha’s TantraSangraha (1501 CE), Jyeshtadeva’s YuktiBhâsa
(“Discourse on Rationale” c. 1530 CE)60 the TantraSangrahaVyâkhya, the YuktiDîpikâ,
the Kriyâkramakari, the KaranaPadhati and other such widely distributed and still
existent works of what has been called the Kerala school of mathematics and astronomy.
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This key passage may be translated as follows. 
Multiply the arc by the square of the arc, and repeat [any number of times]. Divide by the product
of the square of the radius times the square of successive even numbers increased by that number
[multiplication being repeated the same number of times]. Place the arc and the results so obtained
one below the other and subtract each from the one above. These together give the jîvâ…

Jîvâ relates to the sine function. Etymologically, the term sine derives from sinus (=
fold) a Latin translation of the Arabic jaib (opening for the collar in a gown), which is
a misreading of the Arabic term jîbâ (both terms are written as jb, omitting the vowels).
Mathematically, however, as is well-known, jîvâ and sara, like the sine and cosine of
Clavius’ sine tables (as their very title shows),61 were not the modern sine and cosine
but these quantities multiplied by the radius r of a standard circle. The jîvâ corresponds
to r sin θ, while the sara corresponds to r (1−cos θ). 

In current mathematical terminology, this passage says the following. Let r denote the
radius of the circle, let s denote the arc and let tn denote the nth expression obtained by
applying the rule cited above. The rule requires us to calculate as follows. (1) Numerator:
multiply the arc s by its square s2, this multiplication being repeated n times to obtain

s ⋅ ∏ 
1

n

s2. (2) Denominator: Multiply the square of the radius, r2, by [(2 k)2 + 2 k]

(“square of successive even numbers increased by that number”) for successive values

of k , repeating this product n times to obtain ∏ 
k=1

n

r2 [(2k)2 + 2k]. Thus, the nth iterate is

obtained by 

tn = 
s2n ⋅s

(22 + 2) ⋅ (42 + 4) ⋅ … ⋅ [(2n)2 + 2n] ⋅ r2n

The rule further says:       

jîvâ = (s−t1) + (t2−t3) + (t4−t5) + …

Substituting:
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(1) jîvâ ≡ r sin θ,
(2) s = r θ, so that s2n + 1 ⁄ r2n = r θ2n+1, and noticing that
(3) [(2k)2+2k] = 2k⋅(2k+1), so that
(4) (22+2)(42+4)…[(2n)2 + 2n] = (2n +1)!, 
and cancelling r from both sides, we see that this is entirely equivalent to the well-known
expression

sin θ = θ − 
θ3

3!
 + 

θ5

5!
 − 

θ7

7!
 + ….

 This verse is followed by a verse describing an efficient numerical procedure for
evaluating the polynomial.62 The existence of these verses has been known to Western
specialists for nearly two hundred years, and is today acknowledged in some Western
texts on the history of mathematics, like those of Jushkevich,63 Katz64 etc. 

In current mathematical terminology, the key step in the Yuktibhâsâ rationale for the
above series is that 

(1)    lim
n→∞

    
1

nk+1
 ∑ 

1

n

ik  =  
1

k+1
, k = 1, 2, 3,…, 

in the sense that the remaining terms are numerically insignificant, for large enough n.

(b) A relevant epistemological question is this: did Newton at all understand the result
he is alleged to have invented? Did Newton have the wherewithal, the necessary
mathematical resources, to understand infinite series? As is well known, Cavalieri in
1635 stated the above formula as what was later termed a conjecture. Wallis, too,  simply
stated the above result, without any proof.65 Fermat tried to derive the key result  above
from a result on figurate numbers, while Pascal used the famous “Pascal’s” triangle66

long known in India and China. Though Newton followed Wallis, he had no proof
either,67 and neither did Leibniz who followed Pascal. Neither Newton nor any other
mathematician in Europe had the mathematical wherewithal to understand the calculus
for another two centuries, until the development of the real number system by Dedekind.

(c) The next question naturally is this: if Newton and Leibniz did not quite understand
the calculus, how did they invent it?  In the amplified version of the usual narrative,
how did Galileo, Cavalieri, Fermat, Pascal, and Roberval etc. all contribute to the
invention of a mathematical procedure they couldn’t quite have understood? The
frontiers of a discipline are usually foggy, but here we are talking of a gap which is
typically 250 years. 

(d) Clearly a more natural hypothesis to adopt is that the calculus was  not invented
in Europe, but was imported, and that the calculus took nearly as long to assimilate as
did zero. Since authoritative Western histories of mathematics are replete with wild
claims of transmission from Greece, an appropriate standard is needed for the evidence
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for transmission. I have suggested that we follow the current legal standard of evidence,
by establishing (i) motivation, (ii) opportunity, (iii) documentary evidence, and (iv)
circumstantial evidence.  

Motivation (a) : Europe had strong motivation to import mathematical and astronomi-
cal knowledge in the 16th and 17th centuries CE, because mathematics and astronomy
were widely regarded as holding the key to navigation which was the route to prosperity
hence the critical technology of the times. As is now widely known, Europe did not have
a reliable technique of navigation, and European governments kept offering huge prizes
for this purpose from the 16th until the 18th century CE. Indeed, the French Royal
Academy, the Royal Society of London etc. were started in this way in an attempt to
develop the astronomical and mathematical procedures needed for a reliable navigation-
al technique.

The first navigational problem concerned latitude: right from Vasco da Gama,
Europeans attempted to learn the Indo-Arabic techniques of determining latitude
through instruments like the Kamâl. The Indo-Arabic technique of determining latitude
in daytime assumed a good calendar, and this led to the Gregorian calendar reform. As
a student and correspondent of Pedro Nunes, Clavius presumably understood that
reforming the calendar, and changing the date of Easter was critical to the navigational
problem of determining latitude from the observation of solar altitude at noon, as
described in widely distributed Indian mathematical-astronomical texts, and calendrical
manuals.  

Opportunity: On the other hand, right from the 16th century there was ample
opportunity for Europeans to collect Indian mathematical-astronomical and calendrical
texts.  The Jesuits were in India, with their strongest centre being Cochin, from where
a copy of the Tantrasangraha or Yuktibhâsâ could easily have been procured. Each Jesuit
was expected to know the local language, and Alexander Valignano declared that it was
more important for the Jesuits to know the local language than to learn philosophy. They
could hardly have functioned without a knowledge of the local calendar and days of
festivity. One of the earliest Jesuit colleges was at Cochin, and it typically had an average
of about 70 Jesuits during the period 1580–1660. Prior to this period, printing presses
had already been started in languages like Malayalam and Tamil, and Malayalam was
being taught at the Cochin college at the latest by 1590.

Documentary evidence: Moreover, the Jesuits were systematically collecting and
translating local texts and sending them back to Europe. In particular, Christoph Clavius,
head of the Gregorian Calendar Reform Committee changed the mathematics syllabus
of the Collegio Romano, to correct the Jesuit ignorance of mathematics, and from the
first batch of mathematically trained Jesuits he sent Matteo Ricci to Cochin to understand
the available texts in India on the calendar, and the length of the year.68 

Motivation (b): Pedro Nunes was also concerned with loxodromic curves, the key
aspect of Mercator’s navigational charts, which involved a problem equivalent to the
fundamental theorem of calculus. Pedro Nunes obtained his loxodromic curves using
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sine tables, which tables were later corrected by Christoph Clavius and Simon Stevin.
Thus, precise sine values were a key concern of European astronomers and navigational
theorists of the time. The infinite series expansion as used by Madhava to calculate
high-precision sine values, the coefficients used for efficient numerical calculation of
these values, and the 24 values themselves were incorporated in a single sloka each, the
last two found also in the widely distributed calendrical manuals like Karanapadhati. 

Motivation (c): Europeans could not use Indo-Arabic techniques of longitude deter-
mination because of a goof-up about the size of the earth. Columbus, to promote the
financing of his project, downgraded the earlier accurate Indo-Arabic estimates of the
size of the earth by 40%. But this size entered as a key parameter in the Indo-Arabic
techniques. Nevertheless, Europeans remained interested in the Indo-Arabic techniques
of longitude determination,  and when the French Royal Academy ultimately developed
a method to determine longitude on land, it was a slight improvement of the technique
of eclipses mentioned in the texts of Bhaskara-I, and the tome of al Biruni.   

Circumstantial evidence: Once in Europe the imported mathematical techni-
ques could easily have diffused, and there is circumstantial evidence that many
contemporary mathematicians knew something of the material in Indian texts.
For example, Clavius’ competitor and critic Julian Scaliger introduced the Julian
day-number system, essentially the ahârgana system of numbering days fol-
lowed in Indian astronomy since Aryabhata. Galileo’s access to Jesuit sources
is well documented, as is that of Gregory and Wallis. Cavalieri was Galileo’s
student, and Gregory does not claim originality for his series. Marin Mersenne
was a clearinghouse for mathematical information, and his correspondence
records his interest in the knowledge of Brahmins and ‘Indicos’.  Fermat, Pascal,
Roberval were all in touch with him, and part of his discussion circle.  There is
other circumstantial evidence to connect Fermat to Indian mathematical texts,
for instance his famous challenge problem to European mathematicians, and
particularly Wallis, involves a solved problem in Bhaskara’s Beejganita.69

‘Julian’ day-number, “Fermat’s” challenge problem, and “Pascal’s” triangle cover only
some of the circumstantial evidence of the inflow of mathematical and astronomical
knowledge into Europe of that period, but I will not examine more details here, since I
regard the above as adequate to make a strong case for the transmission of the calculus
from India to Europe in the 16th and 17th c. CE.  

4 Mathematics Education

To jump from the past to the future: what bearing do these concerns have on current
mathematics education? In the light of the revised history of the calculus, in the light of
the argument that mathematics is a social construction that is likely to change with
changing technology, especially the widespread use of computers, how should mathe-
matics and calculus be taught today? 

C. K. Raju Computers, mathematics education, Yuktibhâsâ 30



In accordance with the principle that phylogeny is ontogeny, the natural way to learn
the subject is to retrace its ontogenesis. The current way of teaching the calculus  retraces
the ontogenesis of the calculus in Europe. The calculus is first taught as an intuitive and
unclearly understood thing, which is nevertheless indispensable for practical purposes.
After at least a couple of years (representing the gap of a couple of centuries in Europe),
one teaches the real number system, and the elements of mathematical analysis, and the
Riemann integral, finally leading to a proof of the so-called Taylor’s theorem, the
classical version of the fundamental theorem of calculus, and Peano’s existence theorem
for the solution of differential equations etc.  Numerical analysis, and discretisation, is
typically expected to come after this.  Since pedagogy follows the (perceived) ontogeny,
the revised ontogenesis suggests a revised way to teach mathematics. The ‘numerical
calculus’ of the Yuktibhâsâ, as distinct from both calculus and analysis, can be taught
directly as a technique of computation, using floating point numbers and empirical
rationale. 

A similar conclusion follows from the argument that formal mathematics is a social
construction, likely to change with technology. The computer has enormously simplified
complex calculations, and has thus encouraged the view of mathematics as calculation.
By encouraging the idea of mathematics-as-calculation, computer technology has al-
ready created sharp conflicts with Western mathematical orthodoxy, and its theological
orientation towards mathematics-as-proof. Ideally one is expected to prove a conver-
gence theorem for an algorithm before writing a computer program for it. Ideally one
should  even prove the program that one uses: of what value is a computer-aided proof
of the four-color theorem if the program used in the proof cannot itself be proved? This
requirement of proof is rarely respected in practice. Few people who use computers
(physicists, engineers etc.) have enough mathematical training to provide these kinds of
proofs. Even if they have, the required proofs may simply not be available, as in the
case, mentioned earlier, of stochastic differential equations driven by Lévy motion. A
practical requirement must be met here and now. For a practical requirement, one
generally cannot wait for as long as one may be ready to wait to demonstrate the validity
of an eternal truth.  

Both arguments suggest that it is time to revise the mathematics syllabus outlined by
Plato. 

(a) Mathematics-as-calculation should be taught for its practical value, at the elemen-
tary and intermediate level. This applies especially to the calculus: given its revised
ontogenesis, and given its implementation on computers.  

(b) Mathematics must be taught as empirically based, and fallible. Thus, certainly, the
question no longer is:  what is the value of 1−1+1−1+1−1...? Nor is it any longer the
question: how should one define 1−1+1−1+1−1... so as to lead to a theory most acceptable
to authoritative mathematicians? Rather, the question is this: are there methods of
summing this series that are empirically useful? Hence, a technique of calculation, e.g.
1−1+1−1+1−1... = 1⁄2, could be acceptable if it is of practical value, like an engineering
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technique,  or can be empirically validated, like a physical theory, or in conjunction with
a physical theory. A given technique of calculation may be fallible, and may not work
in another case: for example, the standard technique of extracting a finite value from a
divergent integral, as used in renormalization in quantum field theory, does not work
with shock waves.  While one need have no qualms about non-universality, naturally,
the most convenient conventions will be those that are most widely applicable. 

(c) On the other hand, I feel Proclus did have a point, that at least at an elementary
level, mathematics-as-proof does afford a certain aesthetic satisfaction, even if mathe-
matics as proof does not fulfill the original promise of providing secure knowledge.
Thus, I feel that the teaching of mathematics-as-proof, like the teaching of music, or
other art form, ought  not to be discontinued altogether, but it should be an optional
matter, which could be taken up, especially at higher levels, by those interested in it.  
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